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The behavior of the logistic system which is generated by the function f ( x )  
= ax(1 - x) changes in an interesting way if it is perturbed by external noise. It 
turns out that the chaotic behavior which was predicted by Li and Yorke for 
orbits of period 3, becomes visible and that a sequence of mergence transitions 
occurs at the critical parameter. The change of the invariant probability density 
and the Lyapunov exponents are examined numerically. The power spectrum 
for the period 3 orbit for different fluctuations is calculated and a recursion 
formula for the time evolution of the probability density is presented as a 
discrete-time analog of a Chapman-Kolmogorov equation. 

KEY WORDS: Dynamical system; chaos; bifurcations; attractor; Lyapunov 
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1. INTRODUCTION 

The qualitative features of macroscopic systems which undergo transitions 
to turbulent behavior have been simulated by many model systems. So the 
Lorenz equations (0 and their more sophisticated modifications by Curry (2) 
have served as a model for hydrodynamic turbulence. Their connection 
with irregular laser pulses has been shown by Haken and Wunderlin. (3'4) 

Other models have been constructed for chaotic oscillations in (bio)- 
chemical reactions and in populations of ecological systems, e.g., by 
R6ssler (5'6) and May. (7) 

While these models usually consist of a set of nonlinear differential 
equations, there is a different approach which considers iterates f"  of a 
certain map f. This function f can either be visualized as a Poincar6 map (8) 
or as a stroboscopic or flash light portrait of the trajectory of a continuous 
time system, o) 
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These discrete-time dynamical systems have among others the advan- 
tage of greater simplicity with respect to numerical calculations as well as to 
mathematical analysis. So for instance it has been rigorously proved by 
different authors (1~ 13) that already maps of the "quadratic-type" of the 
one-dimensional interval onto itself show chaotic properties. It has been 
also proved for a class of functions that there exists an invariant measure 
which is absolutely continuous with respect to the Lebesque measure. 

In numerical experiments one can "see" this when the histogramatic 
measure is different from zero in the whole invariant interval. Furthermore 
the (measure-theoretic) entropy of those systems becomes positive, which 
can be calculated via the Lyapunov characteristic exponents. This also 
means that we have a sensitive dependence on initial conditions. 

An example where "chaos" which was predicted by a mathematical 
theorem could not be seen in computer experiments is the well-known 
theorem of Li and Yorke which states for maps of an interval onto itself: 
"period 3 implies chaos. ''(14) There it was proved that in the presence of an 
orbit of period 3 there exist orbits of arbitrarily high periods and a 
nondenumerable set of points, which have aperiodic orbits. [Here period-3 

means f3(xo) < x o < f(xo)  < f2(x0). ] 
This result was generalized to orbits of period ~ 2 n by Oono. (15) What 

one really sees on the computer is often not chaos but periodic orbits which 
are just as regular and globally stable as any other period. The reason that 
one cannot find these aperiodic orbits numerically is that they are repelling 
and also of Lebesgue-measure zero. It seems to be a common feature of 
these systems that if one increases the relevant parameter, the system 
undergoes a sequence of period-doubling bifurcations until above a criticat 
parameter value a chaotic regime begins. This chaotic regime is, however, 
not homogeneous but interrupted by "parameter windows" in which stable 
periodic solutions are present. These "windows" have been seen not only in 
one-dimensional models (cf., Fig. 13 and Ref. 16), but also, e.g., in the 
two-dimensional discrete Hrnon  attractor (17) and even in the three-di- 
mensional Lorenz attractor. (~8-2~ Since one cannot predict exactly for 
which parameters such stable periodic orbits exist, one cannot distinguish 
by numerical calculations between a periodic orbit of very long period and 
a truly aperiodic orbit. 

On the other hand it has been proved that aperiodic solutions are not 
too rare, in the sense that there exists for a certain class of functions a set of 
parameter values with positive Lebesgue measure, for which no stable 
periodic orbits exist. With the help of renormalization-group techniques one 
can even predict where these parameter values can be expected. (21'22) 

From a physical point of view it seems natural to ask how much of the 
qualitative behavior of these model systems survives in nature, where small 
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perturbations are permanently present. (23-26) So one can introduce fluctua- 
tions, not in order to produce chaos but to check how stable a deterministic 
dynamical system is against small perturbations. What we find is that for 
the logistic system the stable periodic orbits with periods 4:2 n disappear 
much faster than orbits of stable period 2" and in a way which is 
qualitatively different. The threshold for the size of the fluctuations for 
which, e.g., the Lyapunov exponents become positive is an order of 
magnitude smaller in the first case. The transition to chaos manifests itself 
in a characteristic change of the probability density, the Lyapunov expo- 
nents, and the autocorrelation function (power spectrum). 

2. DEFINIT ION OF THE MODEL SYSTEM CONSIDERED 

We examine the influence of random perturbations on the logistic 
system, which is defined by the family of functions 

f~ : [0, 1] ~ [ 0 ,  1] x~->ax(1-x )  (1) 

where a E [0,4]. (In the following we put: f : = f a . )  An orbit (or trajectory) 
for this system is given by a sequence of numbers x~ ~ [0, 1], n E N o := {0, 
1,2 . . . .  }, such that 

x . + l  = f ( x , )  (2) 

In order to simulate the fluctuations, we add to each x., n > 0 a pseudoran- 
dom number ~.. The random numbers were equally distributed in the 
interval Ia := [ - f i ,  t9]. They had zero mean and standard deviation 

o = p / # .  
So the perturbed system is given by sequences (Y.).Eno, where 

x0 = x0, and • = f(Y.-1) + ~. for n > 0 (3) 

Since the numbers ~. are the outcome of a pseudo-random-number genera- 
tor of a computer, they can also be interpreted as a dynamical system with 
some deterministic generating function 

g : IB-~ l~ ~.~-->~.+1 (4) 

In this way we are in fact considering a two-dimensional dynamical system 

F:I .( f i )•215 (Y., ~. ) k--> (07. +,, ~. + 1) (5) 

where 18(fl) c [0, 1] is the basin of the system defined below. This can also 
be interpreted as the interaction of the two systems f and g. 
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3. CONDITION FOR THE BOUNDEDNESS OF THE LOGISTIC 
SYSTEM 

The domain of the logistic function (l) is restricted to the unit interval 
because the iterations of starting values outside of [0, 1] diverge to minus 
infinity. That is also the reason why the fluctuations in (3) must have an 
upper bound, if the system should be confined to a finite interval. The fact 
that we are not allowed to admit fluctuations of arbitrary largeness is not in 
contradiction with intuition since we are dealing with a system which 
corresponds, e.g., in ecology to a finite population which of course will die 
out if there is a large enough fluctuation, i.e., a fatal catastrophe. 

For the upper bound/3max of the fluctuations (n we have the following: 

Proposition. Let ~n ~ [ - / 3 ,  +/3] for /3 /> 0 and for all n E N let 
a ~ [3, 4]. Then there exists 

/3max>>--~aa [2a-aZ-4  + 2(3a2-4a +4)~/2 ] (6) 

and a basin I~(fi) ~ [0, 1] such that for all Xo ~ 18(/3) and for all fi ~< /3ma~ 
the sequence (:~n),s~ of Eq. (3) is contained in 18(/3). 

Proof. See Appendix A. 

4. TIME DEVELOPMENT OF THE PROBABILITY DENSITY 

From the point of view of statistical mechanics, only the "average" 
influence of the system g onto the system f is interesting. Furthermore a 
realistic system should be independent of the actual choice of a specific 
random sequence. Therefore one should only consider the ensemble, in 
which the systems (3) have the same generating function f but different 
sequences (~n)n~" NOW we can define the ensemble average ( r )  of some 
function r by 

( r )  := f~R(~)r(~)d~ (7) 

where R denotes the density function of the random numbers ~n. Thus we 
get a recursion formula for the probability density fi(x,n + 1) that the 
system, starting at x 0, is at the point x after n + 1 iterations. It is given by 
(cf. Appendix B) 

& x , n  + 1) = ff_ n(f(y) - x) (y,n)dy (8) 

In our case, where the (. are equally distributed, we have 

R(x) = (1/2/3)X,~ (x) (9) 
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where 

:= [ 1 if x E I (x) XI 0 i f x  ~ I  

is the characteristic function of the interval I. For the density (9), the 
recursion formula (8) becomes 

l f j  dz ~ ( x , n + l ) = ~  B u ( z + x )  

x [ ~ ( ~ -  u(~ + x),n) + ~(~ + . (z  + x),~)] (10) 

where we have put u(x):= (1 /4  - x/a)  1/2. 
In our numerical calculations it appeared that the probability-density 

of the system (3) became stationary after some 106 iterations and seemed to 
be independent of the initial values of x 0 and ~l. 

5. THE PROBABILITY DENSITY OR "HISTOGRAMATIC 
MEASURE" 

The histogramatic measure gives a frequency distribution of a trajec- 
tory through a certain starting point in the unit interval. It is invariant 

under the transformation (3) if: /~(. ,n + 1) =/~( . ,n)  : = / %  in Eq. (8). For a 
system with stable orbit x 0 , . . . ,  x n - ~ of period n, it is given by 

n - - 1  

~*(x) = y~ a(x - x,) (11) 
i = 0  

On the computer this is approximated after m > n steps and with a 
resolution of 1/k of the unit interval (i.e., the unit interval is equally 
partitioned into k subintervals Ii) by the histogram 

k n - - I  
m fi*(x,m,k) = -~ ~ ~ Xli(X)Xl,(Xj) (12) 

i =  I j = 0  

This is a function with n "sharp" peaks. Consequently, an aperiodic orbit 
or chaos is represented by a histogramatic density which is different from 
zero on "large subsets" of the unit interval. Lorenz called a system 
"semiperiodic" if it possesses an attractor which is aperiodic but looks 
periodic.  (27) To define a semiperiodic orbi t  let (xk) n :=(Xk,Xk+, ,  
Xk+ 2 . . . . .  ) and denote by "range of (xk)," the closure of the set of 
elements of the sequence (x,)  n. Then an aperiodic sequence (Xn)n~ ~ is 
called semiperiodic of period n if the ranges of (x~) m where 0 < k < n are 
disjoint for m = n but overlap for m > n. For a typical semiperiodic system 
the histogram consists of n different "broad" peaks and is zero elsewhere, 
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i.e., the system jumps  periodically to n different "islands" in the unit  
interval. In  the continuous time case this kind of behavior  (which is also 
characterized by a power spectrum which consists of b roadband  noise and 
sharp peaks) is known as "phase coherence".  (28) 

Lorenz described semiperiodic behavior  of a discrete deterministic 
system (2), where transitions to successively lower semiperiodici t ies--which 
he called "reverse b i furca t ions"- -occur ,  as the relevant parameter  a is 
increased beyond  the critical value. The a n at which these reverse bifurca- 
tions take place converge to a certain limit ac in a way which is quite 
similar to the sequence of subharmonic  bifurcations (29'3~ where the ratio 
( a ~ +  1 - a c ) / ( a  n - ac)  converges to a fixed limit for n ~ oe. Dur ing such a 
reverse bifurcation the disjoint components  of the support  of the invariant 
measure merge pairwise similar to Figs. 1 and 2. In  spite of this apparent  
similarity, the "mergence transitions" which we observe for the per turbed 
system (3) represent a different behavior. Here we fix the parameter  a at a 
value for which the unper turbed system (1) has a maximally stable periodic 
orbit with period p. If p = m �9 2 n, where m, n E N, we observe a sequence of 
mergence transitions when we increase the f luctuation size/3 as the relevant 
parameter.  Dur ing this procedure  the orbits are always semiperiodic of 
successively lower periods, while between two reverse b i furca t ions- - in  the 
sense of L o r e n z - - m a n y  different periodic or aperiodic attractors might  
exist. In  Table I we have listed the first n values /3i where mergence 
transitions take place when we choose different parameters.  They  corre- 
spond to values at which system (1) has stable orbits of period 26, 2 ~, 3 �9 2 ~, 
respectively. For  the case of (semi) periodic orbits of period p = 2 m (to 

Fig. I. Support of the invariant measure (drawn as vertical lines) versus the logarithm of fi 
(which is equal to the standard deviation of the fluctuations times a constant). The fluctua- 
tions are confined to the interval [ -  t,  /3] and therefore all iterates of any allowed initial value 
will lie within one of the intervals which constitute the support of the invariant measure. We 
have chosen a = 3.498 ~ a 4 and 10 - 4  ~< /3 ~< 0.03. 
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Fig. 2. Same  as Fig. 1, but  we have  chosen a = 3.569945 ~ a c and  10 - 6  ~< fl ~< 0.03. If  the 

f luctuat ions go to zero the suppor t  tends to the orbit  of "pe r iod  2 ~ ' '  which  appears  to be a 

" c a n t o r e s q u e "  fractal  as can  be easily seen f r o m  this construct ion.  

which the first two columns of Table I belong) Crutchfield and Huberman  
observed a "bifurcation gap ''(24) which is just the result of these noise 
induced mergence transitions. 

It seems that the ratio of successive points fli+l/fli  where mergence 
transitions take place, tends to a limit which is decreasing for growing 
parameter  values a. (It is approximately 8.0 for 2 ~ and 6.0 for 3 - 2~ cf. 
Table I.) This behavior seems to confirm the observation (34) that for the 
deterministic system (1) at the critical parameter  a = a c, the spectral 
amplitudes of different frequencies corresponding to periods p = 2 n de- 
crease with a factor of 6.6. 

Table I. 

For  the pa ramete r s :  

a a I 

Mergence Transition Points 

a I = 3,5697 (period 64) 

a 2 = 3,569945 ~- a~. ( "per iod  2 ~ ' ' )  

a 3 = 3,8493 ~ a c, ( "per iod  3 - 2 ~ ' ' )  

a2 03 

flj 1 . 1 0 6 x 1 0  e 1 . 1 0 4 x 1 0  -2  

f12 1.267 X 10 -3  1.255 x 10 3 

/33 1.548 X 10 - 4  1.484 x 10 4 

fin 2.094 x 10 5 1.749 X 10 - s  

f is  3.691 X 10 - 6  2.056 X 10 - 6  

f16 7.533 X 10 - 7  

/~7 2.980 x 10 s 

5.945 x 10 - 4  

8.580 x 10 - s  

1208 x 10 -2  

2.176 x 10 - 6  
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For the calculations above we evaluated the support of the invariant 
measure P* which is at the same time the set R, of all possible values of 2, 
obtained from (3) for n--> ~ starting at x c and allowing all possible 
sequences (n of fluctuations of a given maximal size ft. When we want to 
determine all possible orbits through x C we find a sequence of intervals R, 
which can be constructed as follows: It  is clear that :71 = f ( x c ) +  
~l~.[f(Xc) - t ,  f (Xc)  + t ]  := R 1 . From the continuity of the function f we 
get a recursion formula for the intervals R~ := [r,, s,] which is given by 

Fn+ 1 = min(f( r~) ,  f(s~)} - fl 

( m a x { f ( r , ) , f ( s ~ ) } + f l  if xc~2[rn,sn] (13) 

The result can be seen in Fig. 1 where we have plotted the support of P* 
versus the logarithm of fluctuation size fl for the parameter  a 4 = 3.498 
where period 4 is maximally stable for system (1). For  0 < fl ~< /32 -~ 1.6 • 
10 .3 we have semiperiod 4 and at fll ~ 1.72 • 10 .2 there is a mergence 
transition from semiperiod 2 to semiperiod l, i.e., to purely aperiodic 
behavior. In Fig. 2 we have the same plot for a ~ a~ where from an orbit of 
period 2 ~ for o = 0 (deterministic) an infinite sequence of mergence transi- 
tions appears if the fluctuations are switched on. Figure 2 also shows that a 
fractal is constructed if the fluctuations go to zero and the orbit of "period 
2 ~ ' '  is reached. (31) Namely, the middle part  of the initial interval which 
constitutes the support of the invariant measure for maximal fluctuations is 
removed at the largest point of mergence transition. Then the middle parts 
of the remaining two intervals are removed and so on. This is the same 

Fig. 3. Same as in Fig. 1, bu t  we have  chosen  a = 3.83187 ~ a 3 and  10 _4 <~ fl ~< !0 -3.  For  
the pe r tu rbed  period-3 orbi t  the change  of the suppor t  is more  dras t ic  and  occurs  a t  m u c h  
lower f luc tuat ions  than  in the previous  cases. 
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procedure as at the construction of a Cantor set but the removed fraction is 
not constant here. (Note however, that the resulting fractal does not 
correspond to a strange attractor.) 

In Fig. 3 the case a = a 3 = 3.8318 �9 �9 �9 is quite different. Here we have 
a transition from (prime) semiperiod 3 to semiperiod 1 at a fluctuation of 
/3 ~ 5.6 x 10 -4 .  

In our calculations we evaluated 107 iterates of the critical point x c, 
and at the same time it was recorded how many times the system has been 
in each one of the subintervals 11 . . . . .  I1000 of the unit interval. The choice 
of the initial point is motivated by the Singer theorem, which, for our case, 
implies that the system possesses at most one stable periodic orbit which 
then would be approached by the orbit through xc. (32~ It appears that the 
histogram is independent of the starting point 20 as long as it is contained 
in the interval IB(/3) of the proposition. 

We examined the influence of stochastic fluctuations on the invariant 
measure of the logistic system mainly for three characteristic parameter  
values: At a 4 = 3.498 we have a (super) stable period 4 for the unperturbed 
system. In Fig. 4 we added equally distributed fluctuations of standard 

P~(X) 

~0 ~ 

ad  a 

a d  5 

, ~ i I . 1 . 1  [ 2 : "  X 

Fig. 4. The invariant measure is approximated by a histogram obtained from 107 iterates of 
the critical point x C = 0.5 and a equipartition of the unit interval into 1000 subintervals. The 
scale of the vertical axis is logarithmic. [Note that P*(x)= 10 -4 means that the system has 
visited the corresponding subinterval once in 10 v iterations.] Histogram for a = 3.498 ~ a 4 and 
o = 10 -3. 
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P~(X) 

l d  5 

D 
I , I f 1 t 

Fig. 5. Same as in Fig. 4 but o = 0.011. 

deviation o = 10 -3. Here the histogram is clearly no more "8-distribution- 
like" but still concentrated around the periodic points, i.e., we obviously 
have a semiperiodic orbit of period 4. As we increase o, two of the peaks 
overlap such that now the semiperiodic orbit has period 2 (Fig. 5). At still 
larger values of o the remaining two broad peaks also overlap until the 
histogram becomes more or less flat (Figs. 6 and 7). At a 3 = 3.831 . . .  the 
unperturbed system has a (super) stable period-3 attractor. There is also a 
large neighborhood of a 3 in which perio d 3 is stable (in fact it is the largest 
"parameter  window" of a stable orbit of period # 2 n, i.e., for which 
a > ac). In contrast to the case of a 4 there are now also aperiodic orbits 
present (according to the theorem of Li and Yorke) which are however 
unstable. Here the situation is again (as we have already mentioned for the 
support of the measure) qualitatively different to the above case: For small 
fluctuations with o < 5 • 10 -4 we again have very narrow peaks (Fig. 8), 
but at ~ = 10 -3 the situation is completely different from the case of a 4. 
The three peaks are still very narrow but the histogram is now already 
positive everywhere in the invariant  interval I a = [ f ( f ( x  C) + f i ) -  fi, 
f(xc) + BI. 

So it seems that the system escapes from the periodic islands now and 
then to stay some time on the aperiodic invariant set until it is caught again 
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Fig. 6. Same as in Fig. 4 but  o = 0.012. 

loJ ?( 

P ~ i X )  

oJ I 

20  o 

- 2  

- 3  

4 

- 5  
20  

)o 1ol [S~ 2( 

Fig. 7. Same as in Fig. 4 but  o = 0.015. 
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p~( 

-l(~ 5 

X) 

0a 
I 1 " '  ' " - - - r - - "  ~,t~ - - ~  X 

Fig.  8. S a m e  as in Fig.  4 b u t  a = 3.8318 . . .  ~ a 3 a n d  o = 3.5 • 10 -4 .  
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Fig.  9. S a m e  as in Fig.  8 b u t  o = 10 -3 ,  
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P~(X) 
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10 

200 

- 1  

"10 

10 -2 

1 ~  ~ 

l d  s 
I I I I ~ I I i I 

a 

Fig. 10. Same as in Fig. 8 b u t o = 4 •  10 -3. 

to[ [2:~ x 

by the periodic islands (Fig. 9). If we now increase o to its maximal value, 
the only change is a broadening of the peaks until the histogram is flat as in 
Fig. 10 where o = .004. For a typical parameter  value at which the unper- 
turbed system behaves really chaotic we have chosen a u = 3.9. Here all 
periodic orbi ts- -as  far as numerical experiments can tel l--are unstable and 
so the histogram is already positive in the entire invariant interval for o = 0. 
However, it shows a very large number  of narrow peaks which correspond 
to the orbit through the critical point x c. For  small fluctuations with 
o < 10 -6 we could distinguish on the computer the first 25 iterates of x c. 
For larger values of o the peaks which correspond to the highest iterates of 
xc become broad and vanish while the other peaks are still very narrow. 
This is also what one would expect from the increase of the standard 
deviation of the sum of the fluctuations (Figs. 11 and 12). 

6. THE LYAPUNOV CHARACTERISTIC EXPONENTS 

A histogram which is everywhere positive in the invariant interval is 
not a sufficient indicator for a chaotic behavior of the system, so, e.g., the 
attractor could consist of a quasiperiodic orbit which fills the unit interval 
in quite a regular manner.  In that case nearby initial points would stay 
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P~(X) 

ao_  ~ 

.tO o 

a6_ ~ 

a62 

ao_ ~ 

ad2 
I I I I I I I 

Fig. 11. Same as in Fig. 4 b u t a = 3 . 9 a n d o = 0 . 0 .  

P~(X) 

a o _  ~ 

a6_ ~ 

I I I I I I 

Fig. 12. Same as in Fig. 11 bu t  a = 10 -3. 

J 
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together for a very long time. A quantity which measures the average 
divergence of nearby paths is the Lyapunov characteristic number X(x0). It 
is defined in our case [one-dimensional discrete systems (2)] by 

n - I  

X(Xo):= lim 1 ~ ] l n  df(xk) 
n-~o~ n k=o dx (14) 

It is also possible to interpret )t as the (information theoretic) entropy of the 
dynamical system or as its production rate of information (for a more 
detailed discussion see Ref. 16). For the perturbed system (3) the Lyapunov 
exponent )t can be defined in close analogy to the formula (14) if we only 
replace the orbit points x k by the perturbed sequence Y~ of (3). Thus the 
effect of fluctuations on the Lyapunov exponents would just reflect the 
different invariant measures P* from Eq. (8). (In our case the stochastic 
perturbations (~ are independent of x.) 

Thus we can replace the time average from Eq. (14) by the ensemble 
average induced by P*: 

)t= f;~oP*(x)ln ff~fx (x) dx (15) 

In Fig. 13 we have a plot of the Lyapunov characteristic exponents versus 
the relevant parameter in the interesting region a E [3.4, 4] for the unper- 
turbed system (1). (16~ 

For many parameters a > a c the systems which had periodic attractors 
for o = 0 became already chaotic, i.e., with )t > 0 for ~ = 1.5 • 10 -4 (cf. 
Fig. 14). However, the Lyapunov exponents of many systems With a < a c 
are also positive although we know from the support of the invariant 
measure that for such a small fluctuation the systems are still semiperiodic 
of period n/> 4 (cf. Table I). This also confirms the observation that the 
Lyapunov exponents are not sensitive to phase coherence (power spec- 
trum). (28) For o = 10 -3 all the )~ are positive except the ones which 
correspond to period 3 or to a period 2 n for n < 3 (Fig. 15). For a slightly 
larger value of ~ (at about o ~ 1.2 • 10 .3 all systems for which a > ac have 
a positive X. The Lyapunov exponents of systems of period 2 n grow only 
very slowly until they also take on small positive values, e.g., for a 4 = 3.498 
this happens at a ~.018. 

In Fig. 16 we see three typical features of the relations between the 
Lyapunov numbers and the standard deviation a of the fluctuations: 

1. For a < a C we have slow growing to small positive values of )t. 
2. For ap > a c, which corresponds to a stable periodic orbit of the 

unperturbed system, we have very fast increase of X to large positive values. 
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-1 

Fig. 13. The L y a p u n o v  exponents  were ca lcu la ted  accord ing  to fo rmula  (14) wi th  the 

a p p r o x i m a t i o n  n > 10 5 and  x 0 = f(xc). L y a p u n o v  exponents  ~, versus the p a r a m e t e r  a ~ [3.4, 4] 

for o = 0.0. 

-1.! 

f 

Fig. 14. Same as in Fig. 13 bu t  o = 1.5 • 10 -4. 
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11 
F i g .  15. S a m e  as  in in F ig .  13 b u t o = 1 0  - 3  . 
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o.o5~ 

F i g .  16. L y a p u n o v  e x p o n e n t s  X v e r s u s  f l u c t u a t i o n  o E [0, 0 .05 ]  f o r  a = 3 . 4 9 8  ~ a 4 ( d a s h e d  

l ine ) ,  a = 3 . 8 3 1 8  �9 . �9 ~ a 3 ( d o t - d a s h e d  l ine ) ,  a = 3 .9  a u ( s o l i d  l ine ) .  



166 Mayer-Kress and Haken 

3. F o r  a u > a c, the system has  an  aper iod ic  a t t rac to r  a l r eady  in the 
unpe r tu rbed  case. Here  the L y a p u n o v  exponen t  seems to be i n d e p e n d e n t  
of a.  

In  our  calcula t ions  we eva lua ted  the )~ for n > l05 i tera t ions  and  for 

100 different  values of a < Omax, where  area • cor responds  to time• which is 
given by  (6) and  which can  be read  off f rom Fig. 16. 

7. AUTOCORRELATION FUNCTION AND POWER SPECTRUM 

F o r  per iodic  orbi ts  the au tocor re la t ion  funct ion  is also per iodic ,  i.e., 
with nondecreas ing  ampl i tude .  The  cor respond ing  power  spec t rum there- 
fore consists only  of sharp f requency lines. (33) 

If  f luctuat ions  are  added ,  we observe a very slow decrease  of the 
corre la t ion  funct ion  which p roduces  small  cont r ibu t ions  of b r o a d b a n d  
noise to the power  spectrum.  

In  Figs. 17, 18, and  19 we have  eva lua ted  the power  spec t rum for the 
pe r tu rbed  per iod-3 orbi t  for three different  values o. The  observed  b r o a d e n -  
ing of the spec t rum is in full agreement  with the above  results ob ta ined  
f rom the h is togram and  the L y a p u n o v  exponents .  

I 

0.' 
t 5o ~ v  

Fig. 17. Power spectrum S versus frequencies u ~ (1 . . . . .  50} for a ~ a s and o = O. The 
autocorretation function was evaluated for time lags up to 101 and averaged over 2000 
iterations. Using the fast Fourier transform the power spectrum was then calculated for 50 
frequencies. In both cases we used the library functions of digital. All the computations were 
also performed on a PDP11-machine of digital. 
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Fig. 18. Same as in Fig. 17, but  we have chosen o = 1.5 • 10 -4.  

I 

Fig. 19. Same as in Fig. 17, but  we have chosen o = 10 -3.  
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8. PERIODIC PERTURBATIONS 

We also made some calculations where the perturbations were not 
random but periodic, i.e., we simulated the interaction between the logistic 
system and a periodic system. The preliminary results show that almost 
everything can happen: If we perturb period 3 with a system of period 2 we 
also get a sequence of (subharmonic) bifurcations until the system becomes 
chaotic. On the other hand we also get chaos if we perturb period 3 by 
period 3 while we get (semi) periodic behavior if we perturb the logistic 
system at a parameter value for which it is itself chaotic. So for instance, at 
a - -3 .9  a periodic perturbation of period 3 with standard deviation a 
= 10 .2 leads to a histogram which consists only of several narrow peaks 
indicating a very regular behavior. Therefore we conjecture that the qualita- 
tive behavior of a chaotic system is stable against fluctuations but not 
against periodic perturbations. On the other hand systems with a periodic 
attractor can become chaotic under both kinds of perturbations. 
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APPENDIX A: PROOF OF THE PROPOSITION 

The system (3) possesses the critical point x~ = 0.5. From the continu- 
ity of fa it follows that for all ~, E I/~ the interval 

xa := [LL(x~ )  + B) - B,L(x~) + ~]  ( a l )  

is mapped into itself under (3) if 

(i) fa(Xc) + fl < 1 (A2) 

and 

(ii) L ( L ( x c )  + B) - B >~ 

It is easily checked that (ii) implies (i) for a E [3, 4], while (ii) is fulfilled for 

1[ o- 4 + 4a + '21 
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as a s t ra ightforward calculat ion shows. Fur the rmore  there is an interval 
IB(/3) :=  [u(B),v(/3)] such that  for all 2o E IB( f i )  there is an n o ~ N such 
that  for all n > n o the member s  )7 n of the orbit  through 2 0 are conta ined  in 
I a. This basin is de termined by  the condi t ion 

F r o m  (A4) we get 

L ( , , ( / 3 ) )  - B = u ( / 3 )  

L ( v ( / 3 ) ) - / 3  = , ( /3)  

a l I (   J2] u ( / 3 ) -  -2a 1 -  1 ( a -  1) 2 

1 (1 u + / 3 )  '/2 v(fl)  = -~ + 4 a 

(A4) 

(AS) 

S i n c e f ( f l )  - fl /> fl for /9  ~ [0,(a - 2 ) / a l  we have u( f l )  <<. fl for a E [2,41. 
Thus  flmax is de te rmined  as the largest root  of the funct ion h ( f l ) : =  

L ( L ( x c )  + B)  - B - u ( B ) .  [] 

APPENDIX B: DERIVATION OF THE RECURSlON FORMULA (8) 

For  a given r a n d o m  sequence of per turba t ions  (~1, �9 �9 �9 ~ . . . . .  ) where 
~i E R the system (3) will be found  after n steps at a certain point  x E [0, 1] 
with a probabi l i ty  given by  

p ( x , n )  = 6 (x  - ~.)  ( S l )  

where 2 n is defined by (3) and  the initial distr ibution was given by  

p(x ,O)  = 3(x  - Xo) (B2) 

Since we want  to take into account  all possible realizations of ~i ~ R we 
have  to integrate over  them at each in termedia te  step with a certain weight 
R(~) .  Then  we get f rom (B1) the averaged distr ibution 

/~(x,n) 

This is identical with i f (x ,  n) of Eq. (8), as can be shown by  induct ion.  
Let  f i ( x , O ) : = d ( X - X o )  , f rom (B3) and  (3) we know that  /~(x, 1) 

= R ( f ( x o ) -  x), which coincides with the result ob ta ined  by  inserting 
i f (x ,  0) into (8), i.e., we have ~ ( x ,  1) = i f (x ,}) .  If  now the wanted  identi ty 
holds after  n - 1 steps, i.e., P ( x , n  - 1) = P ( x , n  - 1), we are al lowed to 
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A 

insert P ( x ,  n - 1) into (8) and get 

n-- t  

fO~ n -1  Z X 
= ~ ]-I R( i)d eR(x-ft .-1)) 

I---I-- 

A 

= e ( x , , )  

In the last step we integrated in (B3) over 4, and used the fact that 

; ,  = f ( 5 , _ 1 )  + ~,.  

NOTE ADDED IN PROOF 

After submission of this paper for publication, we received a preprint 
from J. P. Crutchfield, J. D. Farmer, and B. A. Huberman, 35 where further 
results on the effect of noise on 1-D maps are obtained. J. P. Crutchfield 
kindly informed us that Y. Oono and Y. Takahashi 36 used Fredholm theory 
to treat the stability of chaos against external noise. A similar method was 
also used by S. -J. Chang and J. Wright 37. 

In Ref. 38, we showed that the noise induced transition from period 3 
to chaos occurs via intermittency. Later on the general theory has been 
developed by J. -P. Eckmann, L. Thomas, and P. Wittwer, 39 and by J. E. 
Hirsch, B. A. Huberman, and D. J. Scalapino. 4~ Our idea of determining 
the support of the invariant measure of system (3) (cf. section 5) can be 
rigorously formulated by using the notion of (e, 8)-diffusions. 41 In Ref. 42 
we generalized eq. (8) for higher dimensional systems and for rnultiplicative 
noise. 
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